Graphite Powder Processing

A Key Element for High Performance Lithium-Ion Batteries

Bernt Ketterer, Ulrich Bosch, Oswin Öttinger, DKG-AKK Herbsttagung, 7th November 2014
Graphite Powder Processing for High Performance Lithium-Ion Batteries

Outline

1. Graphite Anode Materials: Position of SGL & Market Perspectives

2. Anode Materials for Lithium Batteries: Basic Requirements

3. Powder Design for High Performance Graphite Anodes, Influences of:
 - BET Surface Area
 - Particle Size
 - Particle Shape

4. Summary
LIB Anode Materials Overview
Material Share – Status 2012

- Artificial and natural graphite biggest share (total >90%)
- Next generation high capacity materials (silicon and tin based) enter the market
- Fast growing market for graphite anodes in 3C and electromobility

Total Volume in 2012: ~32000t

Source: SGL, Avicenne, Battery Market Development 2012-2025
Graphite Anode Materials
Joint Forces for Best Solutions

More than 10 Years Cooperation

World Largest Synthetic Graphite Anode Production
& Leading Edge Technology Know How
Graphite Powder Processing for High Performance Lithium-Ion Batteries

Outline

1. Graphite Anode Materials: Position of SGL & Market Perspectives

2. Anode Materials for Lithium Batteries: Basic Requirements

3. Powder Design for High Performance Graphite Anodes, Influences of:
 • BET Surface Area
 • Particle Size
 • Particle Shape

4. Summary
Lithium Ion Battery: Basic Working Principle

Charge
- Al – current collector
- Graphite
- Anode
- Li⁺ ions flow
- Charge
- Electrolyte
- Graphite-Anode
- Cu – current collector

Discharge
- Al – current collector
- Graphite
- Anode
- Li⁺ ions flow
- Discharge
Li-Ion Battery - Graphite as Anode Material
Solid Electrolyte Interface - SEI

First Cycle: Carbon/graphite + Electrolyte \(\rightarrow\) Solid Electrolyte Interphase

TEM of Solid Electrolyte Interphase
Schematic drawing of the composition of the SEI

The SEI protects the graphite from solvent co-intercalation \(\rightarrow\) Graphite would not work without SEI

SEI formation consumes Lithium!
Key Parameters of Electrode Materials: Capacity and Efficiency

Capacity:
How much lithium is intercalated in graphite? Depending on:
• How many defects are in the graphite?
• Degree of graphitization

Capacity loss (1st Cycle Efficiency):
How much lithium contributes to SEI-formation? Depending on:
• specific surface (e.g. BET)
• particle size and shape
Graphite Anode Materials: Basic Requirements

Battery Level

- **Gravimetric Energy Density**: Wh/kg
 - Lightweight Battery

- **Volumetric Energy Density**: Wh/l
 - Small Battery

- **Power Density**: W/kg or W/l
 - Acceleration

Material Level

- Specific Capacity (mAh/g)
- Voltage Level
- 1st Cycle Efficiency
- Electrode Loading (mAh/cm²)
- % Inactive Material
- Film Swelling
- Material & Film Density (g/cm³)
- Rate Capability (Temperature-Dependence)
- Particle Size / BET
- Purity
- Cycle Stability

Directly Influenced by Graphite Particle Properties

SGL Proprietary Information
Graphite Powder Processing for High Performance Lithium-Ion Batteries

Outline

1. Graphite Anode Materials: Position of SGL & Market Perspectives
2. Anode Materials for Lithium Batteries: Basic Requirements
3. Powder Design for High Performance Graphite Anodes, Influences of:
 - BET Surface Area
 - Particle Size
 - Particle Shape
4. Summary
A low BET surface is crucial for:

• 1st cycle Efficiency (low Li losses)
• Energy density
• Safety
• Cycle life
• Binder demand

...
Lower the BET Surface Area: Influence of the milling device

Milling type & milling & spheroidisation equipment configuration influence significantly the particle shape / BET and therefore also the battery performance.

- Additionally milling & rounding yield is the key element for commercial success.
Lower the BET Surface Area: Influence of rounding and the coating

Graphite powder → Engineered anode material

Rounding → Coating

Lower BET Surface
Quicker Charge/Discharge: Influence of the Particle Size

Graphite with medium particle size

Graphite with very small particle size

Particle size distribution and shape
- \(d_{50}\) between 10 and 30 \(\mu m\)
- \(d_{90}< 70 \mu m\)
- Low amount of fine particle fraction

Smaller anode particle size distribution is beneficial for quicker LIB charging. However... Formation of higher surface area
Quicker Charge/Discharge: Influence of the Particle Shape

How fast is lithium intercalated in graphite? Depending on particle orientation in the electrode.
High Film Density for Improved Energy Density: Influence of Particle Shape & Particle Size Distribution

“Potato shape” particle generates higher film packing density at lower compaction pressures.

Bimodal / “broader” particle size distribution can generate higher film packing densities. However, BET need to be kept low, otherwise efficiency loss.
Graphite Powder Processing for High Performance Lithium-Ion Batteries

Outline

1. Graphite Anode Materials: Position of SGL & Market Perspectives
2. Anode Materials for Lithium Batteries: Basic Requirements
3. Powder Design for High Performance Graphite Anodes, Influences of:
 • BET Surface Area
 • Particle Size
 • Particle Shape
4. Summary
Graphite Powder Processing for High Performance Lithium-Ion Batteries Key Elements - Summary

- Energy Density
- 1st Cycle Efficiency
- Quick Charge Cycle Life
- Particle Size Distribution
- Particle Size
- Particle Shape (BET)
- Yield Costs
- Particle Surface (coating)

SGL Proprietary Information
Thank you for your attention!
Important note:
This presentation may contain forward-looking statements based on the information currently available to us and on our current projections and assumptions. By nature, forward-looking statements involve known and unknown risks and uncertainties, as a consequence of which actual developments and results can deviate significantly from these forward-looking statements. Forward-looking statements are not to be understood as guarantees. Rather, future developments and results depend on a number of factors; they entail various risks and unanticipated circumstances and are based on assumptions which may prove to be inaccurate. These risks and uncertainties include, for example, unforeseeable changes in political, economic, legal, and business conditions, particularly relating to our main customer industries, such as electric steel production, to the competitive environment, to interest rate and exchange rate fluctuations, to technological developments, and to other risks and unanticipated circumstances. Other risks that in our opinion may arise include price developments, unexpected developments connected with acquisitions and subsidiaries, and unforeseen risks associated with ongoing cost savings programs. SGL Group does not intend or assume any responsibility to revise or otherwise update these forward-looking statements.