

U

Einführung & Motivation
Bisherige Erfolge der Klimaschutzkonferenzen

Starker Ausbau der Erneuerbaren Energien |
Technologien werden immer günstiger

Elektrifizierung schreitet voran |
Elektromobilität ist nicht aufzuhalten

Gesellschaft fordert Klimaschutz |
Immer mehr Demonstrationen und Klagen

Einführung & Motivation

EU-Kommission will anspruchsvolle Klimapolitik weiterführen

ille Angaben ohne Gewähr. Die Informationen sind keine steuerliche und/oder rechtliche Beratung und ersetzen diese auch nicht

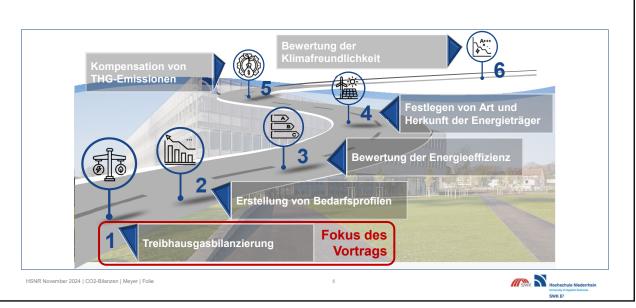
- Industriepakt (Clean Industrial Deal: CID) soll in den nächsten drei Monaten formuliert werden.
- Wichtige Eckpunkte: (1) Vereinfachung der Bürokratie, (2) Entwicklung von Märkten für grüne Produkte und (3) Bereitstellung privaten Kapitals für grüne Investitionen.
- Energieintensive Branchen: Vermeidung von Wettbewerbsnachteilen durch hohe Energiepreise.
- Carbon-Management-Strategie fortführen: CCS & EU ETS (auch nach 2030 zentrale Rolle)
- CBAM: Klimazoll soll ab 2027 schrittweise eingeführt werden.

©cirano83 via Canva.com

CO₂-Bilanzen notwendig

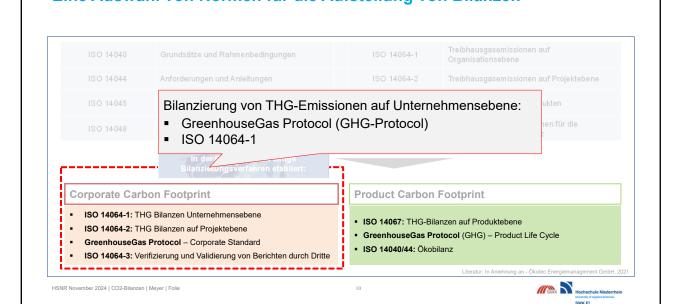
Quelle: EU, Klimakommissar Hoekstra

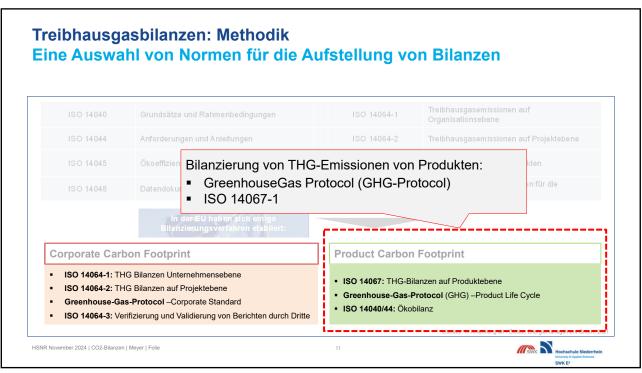
7

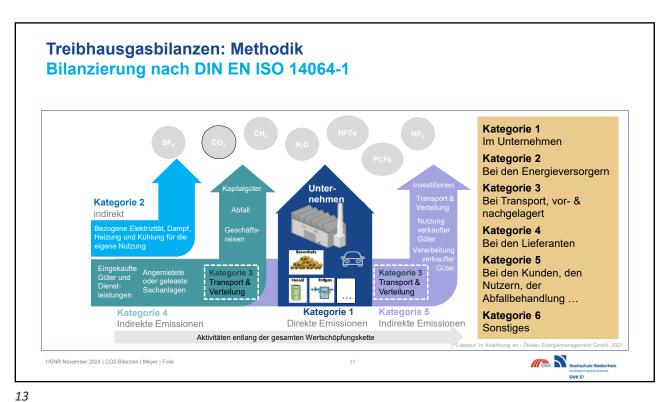

Hochschule Niederrhein
University of Applied Sciences
SWK EP

HSNR November 2024 | CO2-Bilanzen | Meyer | Folie

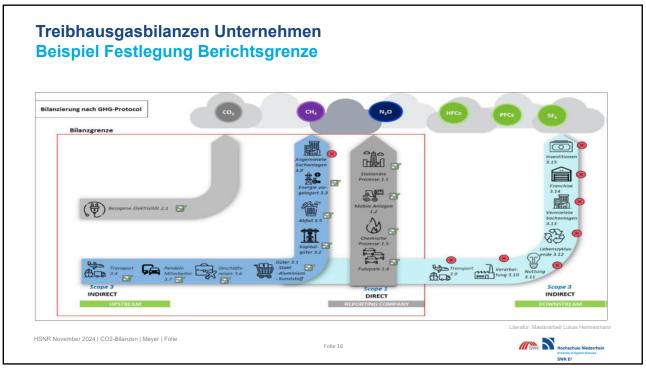
7

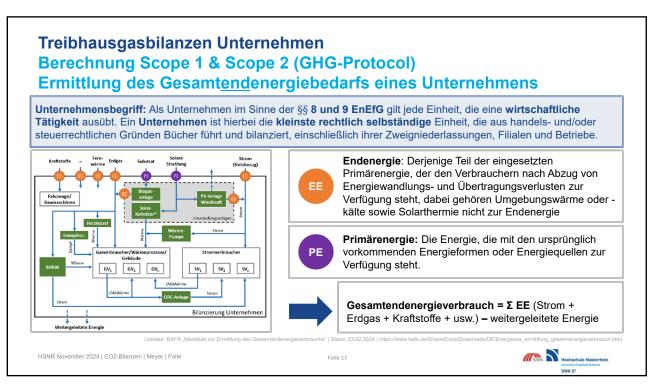

Einführung & Motivation


Klimaneutrale Energieversorgung: Wichtige Schritte



Treibhausgasbilanzen: Methodik
Eine Auswahl von Normen für die Aufstellung von Bilanzen



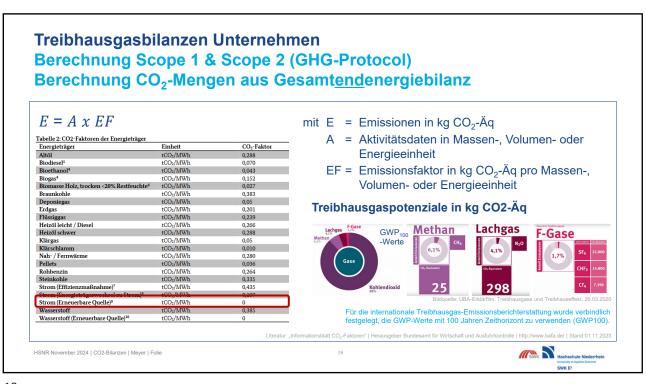

Treibhausgasbilanzen: Methodik **Bilanzierung nach Greenhouse-Gas-Protocol (GHG-Protocol)** Scope 1 Im Unternehmen Unter-Scope 2 Bei den Energieversorgern Scope 2 indirekt Scope 3 upstream Bei den Lieferanten Transport & Verteilung Scope 3 downstream Bei den Kunden, den Nutzern, der Abfallbehandlung ... Scope 3 downstream Scope 3 upstream Scope 1 Direkte Emissionen Indirekte Emissionen Indirekte Emissionen Aktivitäten entlang der gesamten Wertschöpfungskette HSNR November 2024 | CO2-Bilanzen | Meyer | Folie

Treibhausgasbilanzen Unternehmen Berechnung Scope 1 & Scope 2 (GHG-Protocol) Ermittlung des Gesamtendenergiebedarfs eines Unternehmens

Bei Berechnung des **Gesamtendenergiebedarfs** innerhalb des Betrachtungszeitraums müssen **sämtliche handelsüblichen Energieformen** berücksichtigt werden.

Wird aus Erdgas, oder Neben- und Abfallprodukte Energie gewonnen und für den Produktionsprozess oder in anderen Bereichen im Unternehmen genutzt, sind diese Energiemengen in der Bilanzierung des Gesamtendenergieverbrauchs des Unternehmens zu berücksichtigen.

Umrechnungsfaktoren für die Ermittlung der Energiemengen sind in den Merkblättern vorgegeben.


Energieträger	Standard- einheit	Heizwert in kWh/Standardeinheit	Brennwert in kWh/Standardeinheit
Heizöl leicht	1	9,94	10,6
Heizöl schwer	1	10,9	11,3
Flüssiggas	kg	12,77	14,06
Erdgas (gemittelt L und H)	m³	9,77	10,78
Steinkohle	kg	8,36	8,6
Braunkohle	kg	5,6	6
Ottokraftstoffe	1	9,02	9,92
Dieselkraftstoffe	1	9,96	10,66
Kerosin	1	11,89	
Biomasse Holz	kg	4,07	4,4
Pellets	kg	5	5,4
Biogas	m³	5	7,5
Biodiesel	1	9,04	9,78
Wasserstoff	m³	3	3,54
Strom	kWh	1	1
Fernwärme/Fernkälte	kWh	1	1

Literatur: BAFA "Merkblatt zur Ermittlung des Gesamtendenergieverbrauchs" | Stand: 23.02.2024 | https://www.bafa.de/SharedDocs/Downloads/DE/Energie/ea_ermittlung_gesamtenergieverbrauch. In the control of the control

HSNR November 2024 | CO2-Bilanzen | Meyer | Folie

Folie 1

Treibhausgasbilanzen Unternehmen **Calculation Tool THG Tool Berechnung Scope 1 & Scope 2 (GHG-Protocol)** GREENHOUSE GAS PROTOCOL **Tools** Energiebedarf [kWh/a] Eingabe der Energiebedarfe 8.000.000 7.000.000 6.000.00 5.000.000 4.000.000 3.000.000 3.812,51 Anteile Scope 1 und Scope 2 **THG Emissionen** [t_{co2}/a] ■Summe Scope 1 ■Summe Scope 2

19

HSNR November 2024 | CO2-Bilanzen | Meyer | Folia

Treibhausgasbilanzen Unternehmen **Berechnung Scope 1 (GHG-Protocol)** Berechnung CO₂-Mengen aus der Produktion – MVO*

 $E = A \times EF$

z.B. Methode A (Input-Betrachtung):

Ebene 1: Für die Berechnung des Emissionsfaktors wird anstelle von Analyseergebnissen ein konservativer Wert von 0,2 Tonnen CaCO₃ (entspricht 0,08794 Tonnen CO₂) je Tonne Trockenton angewandt. Der EF = Emissionsfaktor in kg CO₂-Äq pro gesamte anorganische und organische Kohlenstoff des Tonmaterials gilt als in diesem Wert enthalten. Zusatzstoffe gelten als nicht in diesem Wert

Ebene 2: Nach den Best-Practice-Leitlinien der Industrie wird unter Berücksichtigung der besonderen Merkmale der Anlage und ihrer Produktpalette ein Emissionsfaktor für jeden Stoffstrom errechnet und

Ebene 3: Die Zusammensetzung der relevanten Rohmaterialien wird nach Maßgabe der Artikel 32 bis 35 bestimmt. Die Zusammensetzungsdaten werden gegebenenfalls anhand der stöchiometrischen Verhältniszahlen gemäß Anhang VI Abschnitt 2 in Emissionsfaktoren umgerechnet

mit E = Emissionen in kg CO_2 -Äq

A = Aktivitätsdaten in Massen-, Volumenoder Energieeinheit

Massen-, Volumen- oder Energieeinheit

* MVO = EU-Verordnung 2018/2066 über die Überwachung von und die Berichterstattung über Treibhausgasemissionen gemäß der Richtlinie 2003/87/EG

en nach Art. 31 Abs. 1 c) MVO für Em

HSNR November 2024 | CO2-Bilanzen | Meyer | Folie

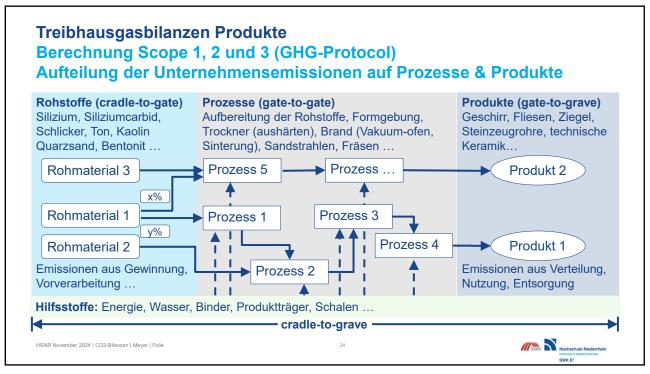
21

Treibhausgasbilanzen Unternehmen **Berechnung Scope 3 (GHG-Protocol)**

- Emissionen aus Transport von Roh- und Hilfsstoffen (vorgelagert)
- Emissionen aus Transport von Produkten und Halbwaren (nachgelagert)
- Emissionen bei den Lieferanten für Roh- und Hilfsstoffen
- Emissionen bei den Kunden, den Nutzern, der Abfallbehandlung
- ... (siehe oben)

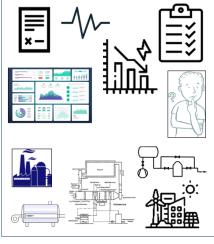
→ Siehe nächste Folien

Gesamtemissionen Unternehmen = Emissionen_{Scope1} (Energie & Produktion


+ Emissionen_{Scope2}

+ Emissionen_{Scope3}

HSNR November 2024 | CO2-Bilanzen | Meyer | Folia



Treibhausgasbilanzen Produkte

Scope 1 & 2 (GHG-Protocol) – große Herausforderung: Aufteilung der Emissionen

Datenquellen / Hilfsmittel

- Rechnungen / Messungen von Energielieferanten
- Messwerte einzelner Anlagen, Prozessleitsystem
- Energiedatenmanagementsystem mit Zählern
- Schätzungen
- ...

Messobjekte

- Produktionsanlagen
- Nebenanlagen, wie Heizung, Klimaanlage, Beleuchtung, Kälteanlage, Dampferzeuger ... PV-Anlage ...
- ...

HSNR November 2024 | CO2-Bilanzen | Meyer | Folia

25

25

Treibhausgasbilanzen Produkte

Scope 3 (GHG-Protocol) – Noch größere Herausforderung: Daten ermitteln

- Lieferanten (i.d.R. "cradle-to-gate"-Analyse):
 - z.B. Siliciumcarbid 4,2 kg_{CO2-Äq}/kg_{SiC} (Scope 1) bzw. 5,3 kg_{CO2-Äq}/kg_{SiC} mit Transport (Scope 1-3)
 - z.B. recyceltes Siliciumcarbid 0,75 kg_{CO2-Äq}/kg_{SiC} (Scope 1)
 - z.B. Ruß 5,25 kg_{CO2-Äq}/kg_{RußCarbonBlack} (Scope 1-3)
 - z.B. Silizium 4,05 kg_{CO2-Äq}/kg_{Silizium} (Scope 1) bzw. 5,32 kg_{CO2-Äq}/kg_{Silizium} (Scope 1-3)
 - ..
- Datenbanken / Software
 - BAFA Informationsblatt CO₂-Faktoren (i.d.R. "cradle-to-gate"-Analyse (file:///C:/Users/Meyer/Downloads/eew_infoblatt_co2_faktoren_2023.pdf)
 - IPCC-Berichte, ghg-protocol, andere Unternehmen
 - LCA-software SimaPro, Ecoinvent, GEMIS, ProBas, DEFRA, EcoTransIT, Ecoinvent ...

HSNR November 2024 | CO2-Bilanzen | Meyer | Folie

Treibhausgasbilanzen Produkte **Berechnung Scope 1-3 (GHG-Protocol)** Beispiel (cradle-to-gate) mit Verbesserungen Emissionsquelle ($E = A \times EF$, Scope 1-3) Wert Maßnahme **Neuer Wert** 3.000 t_{CO2-Äq} Rohmaterial 1 (inkl. Transport) 15.000 t_{CO2-Äq} anderes Material 600 t_{CO2-Äq} Rohmaterial 2 (inkl. Transport) 750 t_{co2-Äq} anderer Lieferant (Transportweg) 450 t_{co2-Äq} $400~t_{CO2-\ddot{A}q}$ Prozess 1 (inkl. aller Hilfsstoffe) LED-Beleuchtung (gilt für alle) 8.000 t_{CO2-Äq} Prozess 2 (inkl. aller Hilfsstoffe) 18.000 t_{CO2-Äq} Wärmerückgewinnung 3.750 t_{co2-Äq} Prozess 3 (inkl. aller Hilfsstoffe) PV-Strom, Wärmepumpe Halle 0 t_{CO2-Äq} 2.920 t_{co2-Äq} Elektro-PKW mit EnE-Strom (teilw.) 1.820 t_{CO2-Äq} Dienstreisen (20.000 km) Fuhrpark (2.200 km) Grüner" Transport 140 t_{CO2-Äq} 320 t_{co2-Äq} 41.190 t_{CO2-Äq} 13.960 t_{CO2-Äq} **Summe** Summe Product Carbon Footprint 1,861 t_{CO2-Äq} /t_{Produkt} Product Carbon Footprint 5,492 t_{CO2-Äq} /t_{Produkt} oder "partieller Product Carbon Footprint" HSNR November 2024 | CO2-Bilanzen | Meyer | Folie

27

Fazit & Ausblick

- Neben politischen Vorgaben erhöhen Kunden den Druck, Verantwortung für die mit den Produkten verbundenen **THG-Emissionen** zu übernehmen.
- Für die Berechnung von Corporate Carbon Footprint (CCF) oder Product Carbon Footprint (PCF) müssen die Methodik (Bilanzierungsrichtlinie, z.B. ghg-protocol) festgelegt, Untersuchungsobjekt (Organisations- & Berichtsgrenzen) und zu betrachtende Treibhausgase definiert sowie Material- und Energieflüsse sowie Emissionsfaktor ermittelt werden.
- Meistens wird ein "partielle PCF" berechnet, da das Produkt vielfältig verwendet wird und die Nutzen der Endprodukte sich voneinander unterscheiden bzw. nicht immer bekannt sind.
- Direkte (Scope 1 Energie & Produktion) und indirekte Emissionen (Scope 2) sind i.d.R. einfach zu ermitteln – und auch gut beeinflussbar.
- Die Lebenswegphasen Rohstoffgewinnung und Konstruktion (Scope 3 upstream) sowie Verteilung, Nutzung und Entsorgung (Scope 3 downstream) machen oft den größten Teil eines PCF-Wertes aus – und sind am wenigsten vom Unternehmen zu beeinflussen.

HSNR November 2024 | CO2-Bilanzen | Meyer | Folia

Hochschule Niederrhein

Kontakt

29

Hochschule Niederrhein Obergath 79, Gebäude J 47805 Krefeld Tel: +49 (0)2151 822-6693

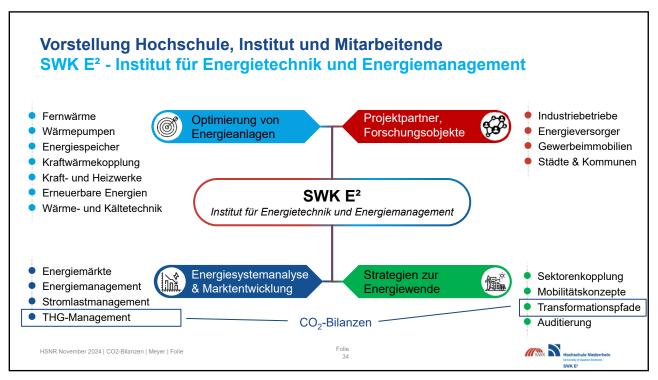
Prof. Dr. Jörg Meyer

joerg.meyer@hs-niederrhein.de Tel: +49 (0)2151 822-6691 Mob: +49 (0)1577 2186678

31

Hochschule Niederrhein

University of Applied Sciences


SWK E²

Institut für Energietechnik und Energiemanagement Institute of Energy Technology and **Energy Management**

