

Evaluation and Improvement of Methods Characterizing the Young's Modulus of Refractory Materials at Room and High Temperature Applications

J. Nießen¹, P. Charvalakis¹, W. Reichert, T. Tonnesen¹, J. Gonzalez-Julian¹, M. Henze², G. Hirt²

> ¹Institute of Mineral Engineering (GHI), RWTH Aachen University ²Institute of Metal Forming (IBF), RWTH Aachen University

Outline

- Motivation: Numerical modelling, applied to refractory masonries
- State of the Art: Determination of Young's Modulus
 - Dynamic method vs static methods, DIC

measurements for deflection measurement

- Goals: Use of RUL tests to determine temperature dependent E static
- **Experimental Results**: RUL Tests, Stress-Strain

Curves, DIC

FEM Validation

Gefördert durch

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestage:

2

Summary & Future Work

Motivation

- Refractories used wherever (in)direct contact with a high temperature process
- Simulations can help lower safety factors for plant design → static load cases
- Accurate material data needed for simulations
 - □ Thermal properties
 - □ Creep behavior
 - Elastic-plastic behavior
- Resonance Frequency Damping Analysis (RFDA) often used for temperature-dependent Young's Modulus E_{dynamic}
- How to determine temperature-dependent E_{static}?
 → New method proposed, utilizing Refractoriness Under Load (RUL) tests

RUL specimen and according FEM model

Bundesministeriun für Wirtschaft und Klimaschutz

Gefördert durch

Model material: High-alumina refractory castable

Selected for its resemblance to **typical refractories** materials

Remains stable at **high temperatures** (no phase transformation)

Open Porosity ≈ 17 %

Total Porosity ≈ 22 %

The expected Young's modulus of the material is around **100 - 150 GPa**

Standardized sample geometry

Material	Specification	Weight percent [%]
Tabular alumina	1-3 mm	35
	0,5-1 mm	17,5
	0,2-0,6 mm	10,5
	0-0,3 mm	10
	0-0,0045 mm	12,5
Reactive Aluminas	PFR	14
Sol-Gel	92% H ₂ O	5,5 - 8,5

aufgrund eines Beschlusses des Deutschen Bundestage

Instron 3-Point Bending Test

Exemplary measurement with Instron

Displacement measurements are too high mainly due to **test frame flexibility**

 $E = \frac{\sigma}{\varepsilon}$ E-Modul = 17 GPa

5

aufgrund eines Beschlusses des Deutschen Bundestages

Bundesministerium für Wirtschaft und Klimaschutz

Gefördert durch:

3-Point Bending Test – Apparent displacement of Instron

The **apparent displacement** of the **test frame** is determined

$$I = \frac{b \cdot h^3}{12}$$

Area moment of inertia for the calibration rod is 1000x that of the standard test

bar.

Bundesministerium für Wirtschaft und Klimaschutz

Gefördert durch:

3-Point Bending Test – Apparent displacement correction

- We can now subtract the apparent displacement from the measured displacement
- The E-Modul is calculated within a defined load range
- Uncorrected E-Modul: 17 GPa
 Corrected E-Modul: 132 GPa

7

Bundesministerium für Wirtschaft und Klimaschutz

Gefördert durch:

3-Point bending test – Digital Image correlation

- ARAMIS 12M adjustale by Zeiss
- Ignoring typical spring-back and settling effects in the experimental setup.
- Direct measurement of local strains on the sample surface
- Stochastic pattern enables complete area analysis.

8

Bundesministerium für Wirtschaft und Klimaschutz

Gefördert durch:

Reference Sample: Aluminum subjected to Load Range from 15N to 10,000N

Surface analysis:

- Shows strain in the X-direction [%]
- Positive values signify tensile stress.
- Negative values signify compressive stress.

Bending Line:

Shows displacement in the **Y-Direction** [mm]

Neutral fiber is in the sample's middle
 Load is applied at a rate of 0.15 MPa/s
 [DIN 993-6]

ibr

Bundesministerium für Wirtschaft und Klimaschutz

Gefördert durch

High-Alumina Refractory Sample: Load Applied Until Failure at 1858N

- The refractory sample exhibits a smaller strain
- Data quality decreases
- Rotation around the Z-axis
- The calculation can no longer be performed in the coordinate software
- Export the bending line and conduct the analysis in Python

Bundesministerium für Wirtschaft und Klimaschutz

Gefördert durch

Bending line analysis in Python

- The respective force corresponds to the measurement value
- The E-Modul can be determined using the maximum deflection and the BestFit method.

Gefördert durch:

11

Bundesministerium für Wirtschaft und Klimaschutz

3-Point bending test – Digital Image correlation

Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

Apparent displacement correction at high temperature

ibr

RWIH/

Bundesministerium für Wirtschaft und Klimaschutz

3-Point bending test – Digital Image correlation – high temperature

The quality decreases with increasing temperature and yielding no usable results

Air turbulence between hot and cold air (different refractive indices) resulted in poor measurements

	Gefördert durch:		
4	继	Bundesministerium für Wirtschaft und Klimaschutz	
	aufgru	nd eines Beschlusses	

High-Temperature Dynamic E-Modulus Measurement via RFDA

Tests conducted with IMCE's HT1750 testing system, using the Sonelastic-RFDA software

Bundesministerium für Wirtschaft und Klimaschutz

15

Gefördert durch:

State of the Art

- RUL: static test method, used to determine pressure softening point
- Commonly used for refractories
- Cylindrical specimen with inner drilling loaded and heated
- Standardized load of 0.2 MPa (ISO 1893)
- Change in length measured directly on specimen
- Also used to measure thermal expansion using a neglectable load of 0.01 MPa

Gefördert durch

Bundesministerium für Wirtschaft und Klimaschutz

Experimental Results – RUL Lightweight Brick

ibr a

Experimental Results – RUL Lightweight Brick

aufgrund eines Beschlusses des Deutschen Bundestages

Bundesministerium für Wirtschaft und Klimaschutz

Experimental Results - RFDA

- RFDA measurement as comparison
- E_{dynamic} (RFDA) constant, increase at 1000 °C
 → High porosity of ASTM 34 may lead so sintering
- E_{dynamic} several GPa higher, than E_{static} (RUL)
- Deviation between static and dynamic Young's modulus in a plausible range

Temperature [°C]	Young's Modulus RUL [GPa]	Young's Modulus RFDA [GPa]
200	4.7	11.8
400	4.3	11.4
600	3.9	11.6
800	3.0	11.6
1000	1.9	12.5

Bundesministerium für Wirtschaft und Klimaschutz

Gefördert durch

Experimental Results – RUL Bauxite Brick

20

Experimental Results – RUL Bauxite Brick

RMTH

Gefördert durch:

21

Bundesministerium für Wirtschaft und Klimaschutz

FEM Validation - Model

- Validation of determined Young's modulus using FEM model of RUL test
- Abaqus/CAE 2019
- 2D axisymmetric model
- Approx. 500 Elements mesh
- Load of 1.3 MPa, since influence of E increases with stress
- Thermal expansion from RUL test with 0.01 MPa (temp.-dependent)
- Simulation with temperature-dependent:

 E_{static} (RUL)
 E_{dynamic} (RFDA)

Gefördert durch

Bundesministerium für Wirtschaft und Klimaschutz

FEM Validation - Results

Summary

 New method investigated: Determination of E_{static} (T), using RUL tests

- RUL tests carried out at several stresses on ASTM Brick 34 and Bauxite brick, determination of E_{static} using isothermal lines
- Comparison with E_{dynamic} from RFDA shows reasonable deviations
- FEM validation using model of RUL test shows good agreement for determined E_{static}

24

Thanks you for your attention! tonnesen@ghi.rwth-aachen.de

This IGF Project (No. 21172 N) of FDKG is supported via AiF within the program for promoting the Industrial Collective Research (IGF) of the German Ministry of Economic Affairs and Climate Action (BMWK), based on a resolution of the German Parliament. We thank the IGF for supporting the project.

25

aufgrund eines Beschlusses des Deutschen Bundestage

Bundesministerium für Wirtschaft und Klimaschutz

Gefördert durch