

PERFORMANCE CERAMICS & REFRACTORIES

Fortgeschrittene 3D-Druck-Lösungen zur Reduzierung von Emissionen und Energieverbrauch in Brennersystemen

APRIL 24TH 2024 <u>Dr. Matthias Schumann,</u> Brad Nakanishi, Tom Briselden

Saint-Gobain Performance Ceramics & Refractories

Deutsche Keramische Gesellschaft e. V.

5. Freiberger FEUERFEST 2024

ORIES

A UNIFYING PURPOSE: MAKING THE WORLD A BETTER HOME

4 STRATEGIC INNOVATION PRIORITIES

MAKING THE WORLD Processes and solutions Solutions to minimize the use of planetary for a zero-carbon **A BETTER** transition HOME CUSTOMER Lightweight Materials and construction systems solutions to develop for performance and new markets well-being

NACHHALTIGKEIT

A decarbonated home

More performance with less

A better living for all

Recognized commitments

BURNER SYSTEMS – ENERGY EFFICIENCY NEED

> Strong impact on production cost & energy efficiency of equipment

- Responsible for direct & indirect costs related to heating (e.g. price of fuel, taxes of emissions)
- > Strive for improvement of industrial heating
 - Fuel adjustment
 - Burner system adjustment
 - ➢ Burner material adjustment (e.g. metal ⇔ ceramic(s))
- > Higher efficiency with higher flame temperature ?
 - Switch from metal to ceramic material
- Iron & Steel industry on first row !
 - > One of the strongest participants in energy consumption & CO2 emissions

© Danieli

CHALLENGES AND OPPORTUNITIES FOR STEEL REHEATING

Typical Continuous galvanizing / annealing lines operate at 30 – 50% Heating efficiency

Additional challenges:

- Product quality / Heating uniformity
- Maintenance
- Fuel costs
- NO_x and emissions regulations
- Throughput

[1] S. Sundaramoorthy et al. *Energy Eng.* (2016). [2] "2022 AIS[T North American Galvanizing Lines Roundup." *Iron & Steel Technology*. (2022).

CERAMIC INSERTS FOR IMPROVING COMBUSTION HEATING

AMASIC-3D® Commercially available concepts:

- Nozzles
- Recuperators
- Nox reducing inserts
- Twisted tape inserts
- Etc.
- Up to 70% less NO_x
 Up to 30% less energy
 Up to 30% less CO₂
- Enhanced tube temperature uniformity
- Reduced maintenance
- Higher throughput

SAINT-GOBA

MITIGATING ENVIRONMENTAL IMPACTS FROM COMBUSTION HEATING

Thermal efficiency

Effective solutions:

- 1. Increase $\eta_{furnace}$ by enhancing energy transfer to strip / increasing Q_{load}
- 2. Increase η_{LHV} by improving recuperator efficiency
- 3. Mitigate NOx emissions from higher η_{LHV}
- 4. Minimize thermal losses to walls, etc. Q_{leak}

LVH: lower heating value

NOX – ENERGY SAVINGS TRADEOFF

NOx *usually* increases with combustion efficiency for recuperated systems because higher efficiency recuperators increase preheat air temperature

Approaches mitigating hot spots \rightarrow NOx reduction by 50+%

SAINT-GOBAIN TOTAL BURNER SOLUTIONS – AMASIC-3D $\ensuremath{\mathbb{R}}$

Retrofit, advanced thermal ceramic designs

Additively manufactured designs in robust SiC

· Expert numerial simulations / optimization capabilities

· Specifically adapted testing competencies

• Solutions tailored to requirements: energy savings, NOx reduction...

SAINT-GORA

CERAMIC INSERT CONCEPT

HEATCOR®

- improvement of combustion efficiency η_{LHV} of up to 20%
- -3-4x convective heat transfert
- -2-6x surface area via regular metal plug recuperator

NOXBUSTER®

- additional control of flame mixing
- reduction of local flame temperature
- tailored design for different burner layout

SPYROCOR®

- allowing increased furnace efficiency $\eta_{furnace}$
- improved heat transfert

SAINT-GOBAIN PERFORMANCE CERAMICS & REFRACTORIES

MODELISATION & FIELD CONFIRMATION – POSCO STEEL

Continuous annealing furnace @ Posco South Korea

- performance trials @RIST
- energy consumption & Nox emission rate
- finetuning of NOx emissions with adjusted design of NOXBUSTER®

MODELISATION & FIELD CONFIRMATION – POSCO STEEL

Continuous annealing furnace @ Posco South Korea

Natural gas consumption per zone (Nm³ t⁻¹)

Use of natural gas / H2 mix up to 20% usual in combustion systems

- no or no significant impact on combustion efficiency and modification of existing combustion system
- > low impact on CO2 emission with if low substitution rate
- > possible to adjust heat intake through gas volume and temperature

TBS Amasic-3D® system / ceramic insert suitable to enhance enhance use of H2 burning:

initial computations for industrial burner-radiant tube configuration confirms flame temperature increases for H2 use
 NOxBuster® efficient in NOx emission reduction

- > H2 combustion impacts air/fuel and exhaust/flow ratios
 - → HeatCor
 may be designed for optimal recuperator performance (pressure, energy recovery)
- H2 combustion reduces exhaust flow (convection) and reduces CO2(g) concentration (radiation)
 SpyroCor

 Gradient for enhanced heat transfer and efficiency

Simulation of impact of ceramic inserts

- Hydrogen (H2) ⇔ Natural gas (CH4) performance differences
- → air-combustion, equivalent firing rate

Adiabatic flame temperature / °C	+165°C
Fuel flow (v/v)	3.32x
Air flow (v/v)	0.83x
Exhaust flow (v/v)	0.91x
Stoich. Air:Fuel	9.56 → 2.39
Stoich. Exhaust:Air	1.10 → 1.21
CO2(g) conc.	9% → 0%
H2O(g) conc.	19% → 35%

➔ Possible to improve temperature filed & NOx emissions through Ceramic inserts

SAINT-GOBAI

Material challenges

- > Combustion atmosphere relatively easy to control
- > Adapted H2 design for combustion materials relatively easy to develop
 - H2 rich & H2O rich atmosphere
- > ... suitable & reliable ceramic material to provide by ceramic manufacturers (furnace linings as well as burner systems)
- Need for more detailed dive into ceramic material under H2 atmosphere
- Association needed with users / burner OEM / furnace OEM
- Develop suitable testing devices
- Confirmation on limits for use of existing (SiC) burner material or which need to develop new material

Material challenges

- Ceramic burner materials made out of SiC (sinterered, recrystalized, siliconized, nitrate bonded) or oxyde materials
- SiC burners:
 - Preliminary lab scale results indicate SiC has wide ranging thermal stability in H2 rich and H2O rich atmospheres
 - H2O level & SiO2 layer to understand as impact on material stability

Understanding material behavior

- Get inspired from science & operational observations
- @ high temperature (>1200°C) SiC thermodynamically unstable in pure H2 (decomposition starting)
- SiC stable in high moisture H2 environment thanks to protective SiO2 layer

SUMMARY & CONCLUSION

> Energy saving and reduction of NOx emissions possible using SiC ceramic inserts in burner components

- > Efficient simulation and design adjust to maximize saving effect
- > Amasic-3D® combination of material & design for optimize results

....Going beyond:

- switch from natural gas to H2 big challenge for all materials in the heating process (metals & ceramics)
- > Need of understanding of material behaviour in H2 environment
- > ceramics (e.g. SiC) offer unique product properties in challenging combusion environments but not yet optimized
- > Common interest of ceramic suppliers, furnaces users, furnace OEM and burner OEM

Herzlichen Dank für Ihre Aufmerksamkeit !

THANK YOU

