EINFLUSS VON WASSERDAMPF AUF HOCHTEMPERATURBESCHICHTUNGEN

ROBERT VAßEN^{1,2}, EMINE BAKAN¹, OLIVIER GUILLON^{1,3} ¹FORSCHUNGSZENTRUM JÜLICH GMBH, INSTITUTE OF ENERGY AND CLIMATE RESEARCH: MATERIALS SYNTHESIS AND PROCESSING (IEK-1), JÜLICH, GERMANY. ² INSTITUT FÜR WERKSTOFFE, RUHR-UNIVERSITÄT BOCHUM, BOCHUM, GERMANY ³ JÜLICH AACHEN RESEARCH ALLIANCE, JARA-ENERGY, GERMANY

ÜBERBLICK

Einleitung

Schutzschichten für Faserverbundwerkstoffe (EBCs)

Vorstellung unterschiedliche Testmöglichkeiten:

- Gasbrenner
- IKTS-Rig
- HVOF-Brenner

Einfluss von Wasserdampf auf Wärmedämmschichten

Zusammenfassung

EINLEITUNG – BETRIEBSTEMPERATUREN GASTURBINEN

Verbesserte Effizienz/Lebensdauer von Gasturbinenkomponenten durch:

Wärmedämmschichten (WDS) / Thermal Barrier Coatings (TBCs)

Faserverbundwerkstoffe / Ceramic Matrix Composites (CMCs) + Schutzschichten / Environmental Barrier Coatings (EBCs)

B. T. Richards, H. N. G. Wadley, Journal of the European Ceramic Society 2014, 34, 3069-3083.

EINFÜHRUNG – GASTURBINEN-BESCHICHTUNGEN

Nickel Basis Superlegierungen plus Wärmedämmschichten/Thermal Barrier Coatings (WDS/TBCs)

D.R. Clarke, M. Oechsner, N.P. Padture, MRS Bulletin, 37 (2012) 891-898.

Mitglied der Helmholtz-Gemeinschaft

Keramische Faserverbundwerkstoffe (CMCs) plus Schutzschichten/Environmental Barrier Coatings (EBCs)

ENVIRONMENTAL BARRIER COATINGS (EBCS)

Auswahlkriterien für EBCs:

- Exzellente Korrosionsbeständigkeit
- Thermische und chemische Stabilität
- Gute Anbindung
- Geringer Ausdehnungskoeffizientunterschied
 Δα zum Substrat:

Energiefreisetzungsrate:

$$G = \frac{\sigma^2 h}{2E_{EBC}} \propto E_{EBC} h \Delta \alpha^2$$

M. Herrmann, H. Klemm, Comprehensive Hard Materials **2014**, 2, 413-446.

ALTERUNG VON SCHUTZSCHICHTEN (EBCS)

Reaktion Wasserdampf mit SiC

SiC bildet bei hohen Temperaturen eine schützende SiO₂ Schicht $SiC(s) + 3H_2O(g) \rightarrow SiO_2(s) + 3H_2(g) + CO(g)$

 SiO_2 verflüchtigt sich in schnellem Wasserdampf (wie viele Oxide) $SiO_2(s) + 2H_2O(g) \rightarrow Si(OH)_4(g)$

Die schnelle Entfernung der Reaktionsprodukte bewirkt eine sichtbare Degradation, für die Diffusion durch die Grenzschicht unterscheidet man zwischen laminaren und turbulenten Bedingungen:

$$\begin{aligned} k_{laminar} &= a. \exp\left(\frac{-E}{RT}\right). v^{1/2} . (P_{H_2O})^n. P^{-1/2} \\ k_{turbulent} &= a. \exp\left(\frac{-E}{RT}\right). v^{4/5} . (P_{H_2O})^n. P^{-1/5} \end{aligned}$$

-

E. J. Opila et al., J. Am. Ceram. Soc., 1999

EBCS ÜBER THERMISCHE SPRITZTECHNOLOGIEN

Problemstellungen bei der Schichtherstellung:

 Zweitphasen (Yb₂SiO₅) in Yb₂Si₂O₇ Lagen mit hohem CTE durch hohe Prozesstemperaturen (Si-Verlust)

 Hoher amorpher Anteil hoch aufgrund der schnellen Abkühlung auf typischerweise niedrige Substrattemperaturen, Schrumpfung bei Hochtemperatureinsatz

Mitglied der Helmholtz-Gemeinschaft

APS: Atmospheric Plasma Spraying
SPS: Suspension Plasma Spraying
HVOF: High-Velocity Oxygen Fuel
VLPPS: Very Low Pressure Plasma Spraying

E.Bakan et al. J Therm Spray 26(3) 2017 E.Bakan et al. Coatings 7(4) 2017 R. Vaßen et al. Coatings 9(12) 2019

HERSTELLUNG VON EBCS FÜR TESTS

Very Low Pressure Plasma Spraying (VLPPS)

- O3CP Torch
- 110Ar/20He
- 2100A-90kW (Partikel-Deposition)
- 200Pa

Angepasstes Temperaturprogramm:

- Herstellung bei über 1000 °C •
- Vor und nach Beschichtung Heizen der Probe mit Plasmafackel
- Langsame Kühlraten (~55K/min) ٠

Kristalline und dichte Schichten!

Röntgendiffraktogramm zeigt hochkristalline Schicht:

THERMISCHES ZYKLIERUNG IM GASBRENNERTEST

EBC auf SiC/SiC

- Erdgas/Sauerstoff Brenner
- Probengröße Ø=30 mm, Dicke 3.0-3.5 mm
- 5 min Heizen, 2 min Kühlen

Angepasstes
Pyrometer für d
Rückseite
kombiniert mit
Kühldüse

Bedingung	Gesamtgasfluss [slpm]	Geschätzte Flammge- schwindigkeit [m/s]	Geschätzter Wasserdampf- gehalt in Flamme(vol.%)
Standard	1146	8	49
Mit H ₂ O Injektion (120 g/h)	1611	47	53

	Probe	Test-Bedingungen					
		Waserinjektion	Aufprall- winkel	T _{Oberfläche}	$\mathcal{T}_{R\mathrm{\ddot{u}}ckseite}$	Zyklen- anzahl	
ie	1	Nein (Standard)	90°	1250 °C	650 °C	500	
	2	Ja	90°				
	3	Ja	45°				

E.Bakan et al. J. Europ. Ceram. Soc 40 (2020) 6236

BURNER RIG TEST (STANDARD) RESULTS

Test conditions: $T_{surface}$ =1250 °C, T_{back} =650 °C, $T_{bond coat}$ = 1120 °C

(approx. 42 h high temperature hold, 17 h cooling periods)

- I. Indications of Yb₂Si₂O₇ reaction with H₂O (g) produced by the natural gas combustion
- II. No visible oxidation product at the Si & SiC/SiC interfaces
- III. The concentrated corrosion in the central part is probably associated with higher temperature in this region

Forschungszentrum

BURNER RIG TEST (+H₂O liq.) RESULTS

11

BURNER RIG TEST (+H₂O liq.) RESULTS

• T_{surf} =1250 °C, 500 cycles approx. 42 h high temperature hold, 17 h cooling periods

Mitglied der Helmholtz-Gemeinschaft

90° test

VR1

HIGH VELOCITY STEAM CORROSION TEST OF APS EBCS

VR1 Vaßen, Robert; 31.03.2022

PHASE COMPOSITION OF SAMPLES BEFORE AND AFTER TEST

MICROSTRUCTURE OF SAMPLES AFTER TEST

Coating (as-sprayed)

Coating (1500 °C-40 h, air)

FAST-SPS

 $Yb_2Si_2O_7 + 2H_2O(g) = Si(OH)_4(g) + Yb_2SiO_5 + porosity$

Different pore morphology in Yb_2SiO_5 scales of coatings vs. FAST SPS

IKTS Dresden, Dr. Hagen Klemm

HIGH VELOCITY STEAM CORROSION TEST RESULTS

Test conditions:

• Yb-silicate samples show reducing weight loss (*k*) as a function of time

 $k_{\text{as-sprayed}} > k_{1500^{\circ}\text{C-40h}} > k_{\text{FAST-SPS}}$

- Parabolic weight loss kinetic of Yb₂Si₂O₇ was also shown in an earlier work at similar and constant test conditions (PhD thesis, M. Fritsch, IKTS, Dresden)
- Possible diffusion limited process

IKTS Dresden, Dr. Hagen Klemm

HVOF TEST CONDITIONS (DJ 2600, OERLIKON)

HVOF TEST-SiO₂

RECESSION RATE – SiO₂

$$SiO_2 + 2H_2O(g) \rightarrow Si(OH)_4(g)$$

- 41 µm/h, 0.6 mm³/h recession rate
- Linear volatilization kinetics

RECESSION RATE – SiO₂ – 1300 °C

Golden & Opila J. Eur. Ceram. Soc. (36)

1135-1147, 2016

HVOF Test This study

Gas-boundary layer theory

$$\begin{split} J_{\rm I} &= 0.664 \left(\frac{\rho v L}{\mu}\right)^{1/2} \left(\frac{\mu}{\rho D_{\rm AB}}\right)^{1/3} \frac{D_{\rm AB} \rho'}{L} \\ J_{\rm t} &= 0.0365 \left(\frac{\rho v L}{\mu}\right)^{0.8} \left(\frac{\mu}{\rho D_{\rm AB}}\right)^{1/3} \frac{D_{\rm AB} \rho'}{L} \end{split}$$

The model (with the assumption of 0.5atm H₂O pressure) estimates x6 larger recession rate in HVOF test (turbulent conditions) vs. Golden & Opila. Calculated recession rate is roughly half of the experimentally observed value.

The concentration of H₂O in the boundary layer, ideal $\rho(T)$, g/cm³ gas law 1,40E-04 (1 atm) 6,98E-05 (0.5 atm) Gas velocity 1,72E+04 2,24E+05 (*) v, cm/s Length of specimen 7,50E-01 5,00E-01 L, cm exposure $\mu(T), g/cms$ Gas viscosity 5,44E-04 5,44E-04 The interdiffusion coefficient for the volatile species in the gas $D_{AB}(T)$, cm²/s boundary layer 2.41E+00 2,41E+00 Equilibrium concentration of the volatile species at the oxide-gas interface, 3,70E-09 3,70E-09 ρ (T), g/cm³ ideal gas law $J_{\rm I}, g/cm^2s$ Mass flux, laminar 5.33379E-07 2.0992E-06 J_t, g/cm²s Mass flux, turbulent 3,33808E-07 2,0391E-06 Calculated recession R_{max-l}, µm/h depth, laminar 5,17E+00 2,04E+01 Calculated recession 3.23E+00 1,98E+01 R_{max-t} , μ m/h depth, turbulent (*) Gatzen et al., J Am Ceram Soc. 2019;102:6850-6862.

HVOF TEST- APS YbDS POLISHED

Central part of the samples

HVOF TEST- APS YbDS POLISHED

- Parabolic reaction kinetics, possibly diffusion-controlled
- In contrast to SiO₂ results, **kinetics for YbDS reaction is slower** (0.09 μ m²/min or 5.47 μ m²/h) in HVOF test in comparison with the literature:

 $k_p = 7 \pm 1 \ \mu m^2/h$ at 80-115 m/s, 1300°C, 1 atm H₂O

M. Ridley and E. Opila, Journal of the European Ceramic Society 41 (2021) 3141-3149

Possible reasons:

Error in the measurement? Inadequate theoretical description!

Mitglied der Helmholtz-Gemeinschaft

•

•

Principle of Thermal Barrier Coatings (TBCs):

APS WÄRMEDÄMMSCHICHTSYSTEM

7YSZ Amperit Pulver (H.C. Starck Amperit 827.006, d_{10} =54 µm, d_{50} =80 µm, d_{90} =112 µm) TriplexPro Brenner, 15% Porosität

NiCoCrAlY (Oerlikon Metco, Amdry 386) VPS F4 Haftvermittlerschicht

IN738 Substrate

EINFLUSS VON WASSERDAMPF AUF APS SYSTEME

Sivakumar et al 2018

Wasserdampf hat Einfluss auf Phasenumwandlung und Sintern

Neue Projekte sind angelaufen, Zusammenhänge genauer zu klären

REM Mikrostrukturabbildung von Gasbrenner-Probe

Langsame Abkühlung (T_{Oberfläche} = 1554°C, T_{Bondcoat} = 1088°C, Zyklen beim Versagen 1933 (~160 h).

Facettierte Oberflächenbereiche

Gasphasenreaktion von YSZ mit Brennergasströmung (H_2O ?)

10 µm

WD = 8.5 mm

Mitglied der Helmholtz-Gemeinschaft

FZJ : IEK1 2020

U EHT = 8.00 kV Detector = SE2

Zusammenfassung

Standard EBC Schichten (Yb₂Si₂O₇) zeigen deutliche Degradation unter schnellem Wasserdampf

Die Degradationsraten werden stark von der Geschwindigkeit, der Porosität und der Temperatur bestimmt

Unterschiedliche Testmöglichkeiten wurden vorgestellt (Gasbrenner, IKTS Rig, HVOF Brenner, Ofen), die genauen Randbedingungen bestimmen die Ergebnisse

Auch Wärmedämmschichten (YSZ) zeigen eine Degradation (Sintern, Phasenumwandlung, Abdampfen?) unter Wasserdampf, genaue Analysen ausstehend

Danke für Ihre Aufmerksamkeit!

MICROSTRUCTURE OF THE SAMPLES BEFORE TEST

XRD

- Indication of crystallization (cristobalite SiO2) after 1 h testing
- Pt layer was added to make the surface reflective to light for surface profilometry measurements

 YbMS content increase is also visible at longer test times via XRD

00. Monat 2017

HIGH VELOCITY STEAM CORROSION TEST RESULTS

 SiO₂ depleted scale thicknesses (*t*) consistent with the measured weight losses (*k*)

k_{as-sprayed}>k_{1500°C-40h}>k_{FAST-SPS}

t_{as-sprayed}>t_{1500°C-40h}>t_{FAST-SPS}

- Higher volume of porosity possibly increases the inward H₂O (g)/outward Si(OH)₄ (g) diffusion rates in the coatings vs. FAST-SPS sample
- Differences between as-sprayed and 1500 °C-40 h coating possibly related to recrystallization (=large pores in Yb₂SiO₅ scale) in the as-sprayed coating

Burner rig testing

- 7 rigs available operated with CH₄/oxygen burners & compressed air cooling
- Independent adjustment and control of surface (measured with pyrometer)
 - & substrate temperatures (thermocouple in substrate)
- High cyclic loading in combination with TGO growth

Typical test conditions:

- T_{substrate} 1050°C
- T_{interface} ~1090°C
- T_{surface} 1400°C
- Cycle duration:
 - 5 min heating, 2 min cooling

ENVIRONMENTAL BARRIER COATINGS (EBCS)

Protection of Ceramic Matrix Composites (CMCs)

Structural materials for gas turbine engine components along the hot gas path

Volatilization in water vapor

$$\begin{split} \mathbf{SiC}(\mathbf{s}) &+ 3\mathrm{H}_{2}\mathrm{O}(\mathrm{g}) \rightarrow \mathbf{SiO}_{2}(\mathbf{s}) + 3\mathrm{H}_{2}(\mathrm{g}) + \mathrm{CO}(\mathrm{g}) \\ &\mathbf{SiO}_{2}(\mathbf{s}) + 2\mathrm{H}_{2}\mathrm{O}(\mathrm{g}) \rightarrow \mathbf{Si}(\mathbf{OH})_{4}(\mathbf{g}) \\ k_{laminar} &= a. \exp\left(\frac{-E}{RT}\right). v^{1/2} . (P_{H_{2}O})^{n}. P^{-1/2} \\ k_{turbulent} &= a. \exp\left(\frac{-E}{RT}\right). v^{4/5} . (P_{H_{2}O})^{n}. P^{-1/5} \end{split}$$

Mitglied der Helmholtz-Gemeinschaft

D. L. Poerschke et al., Annu. Rev. Mater. Res. 47 (2017) 297-330

THERMAL SPRAY TECHNIQUES: APS, SPS, HVOF & VLPPS

Deposition Conditions and Feedstock

APS	Atmospheric Plasma Spraying
SPS	Suspension Plasma Spraying
HVOF	High Velocity Oxygen Fuel Spraying
VLPPS	Very Low Pressure Plasma Spraying

Typical splats:

All technologies available in the Jülich Thermal Spray Center (JTSC)

EBCS FOR OX-OX CMCS

- Fiber: Nextel 610
- ➢ Matrix: 85 % Al₂O₃ + 15 % 3YSZ
- Density: 2,88 g·cm⁻¹
- Porosity: 29 %

W.P. A. Rüdinger, Keramische Zeitschrift, **03** (2013) 166-169 Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum

DIFFERENT EBCS MADE BY APS

As-sprayed

After heat-treatment 4x 20 h, 1200 °C

Good adherence

Y₃Al₅O₁₂

Cracks at interface large porosity

Yb2Si2O7

Delamination due to large TEC mismatch!

200 µm

R. Vaßen, et al, Coatings 2019, 9, P. 784

EBCS FOR NON OXIDE CMCS

Substrates:

SiC/SiCN CMC, DLR Stuttgart

using Tyranno SA3 SiC fibers

α-SiC HexoloyTM substrates(Saint Gobain Ceramics, Niagara Falls, NY)

Forschungszentrum