EINFLUSS VON TEMPERATUR UND ATMOSPHÄRENZUSAMMENSETZUNG AUF DIE BESTÄNDIGKEIT VON FEUERFESTMATERIALIEN IN H2-VERBRENNUNGSATMOSPHÄREN

Ergebnisse des Teilprojekts 3 in der AiF-Leittechnologie der Energiewende TTgoesH2

C. Fritsche, Prof. H. Krause Lehrstuhl für Gas- und Wärmetechnische Anlagen

5. Freiberger Feuerfest-Symposium 2024

Projektstruktur TTgoesH2

Integration von Wasserstoff als klimaneutraler Energieträger in die industrielle und gewerbliche Thermoprozesstechnik – TTgoesH2

TP1:

ULoBurn Ultra Low Emission Burners

Entwicklung von ultraemissionsarmen Verbrennungssystemen für Wasserstoff

TP2:

GreCoCon Green Combustion Control

Industrielle Verbrennungsreglung für hohe volatile H2-Anteile auf Basis von Flammensignalen

TP3:

ResInMa Resistant, Innivative Materials

Innovative Werkstoffe für den Einsatz in Wasserstoff und dessen Verbrennungsprodukten

Teilprojekt 3 (TP3)

ResInMa

(Resistant, Innovative Materials)

Motivation:

- Grüner Wasserstoff zur Prozesswärmeerzeugung
- Steigerung der adiabate Flammentemperatur und Zusammensetzung der Prozessatmosphäre verändert sich.
- Die veränderte Abgaszusammensetzung (Wasserstoff im Brennstoff, erhöhte Feuchte im Abgas) in Verbindung mit hohen Temperaturen führt zu veränderten Belastungsfällen in der Thermoprozessanlage, welche die Materialien schädigen können.

Lösungsansatz:

- Untersuchung konventionell eingesetzter Hochtemperaturwerkstoffe hinsichtlich ihrer Verwendbarkeit in Prozessatmosphären der Wasserstoffverbrennung
- Auslagerungsversuche, anschließende Werkstoffanalytik
- Schwerpunkt: Brenner und Wärmeübertrager, Transport- und Chargiersysteme sowie Feuerfestmaterialien mit hoher Beständigkeit gegen Feuchte bei höchsten Temperaturen und kondensierendem Wasser

Teilnehmende Forschungseinrichtungen

Lehrstuhl für Gas- und Wärmetechnische Anlagen (GWA), TU Bergakademie Freiberg Gustav-Zeuner-Str. 7, 09599 Freiberg Projektleiter: <u>Dipl.-Ing. Chris Fritsche</u>

Leibniz-Institut für Werkstofforientierte Technologien Leibniz-Institut für Werkstofforientierte Technologien Badgasteiner Str. 3, 28359 Bremen Projektleiter: Prof. Dr. Udo Fritsching, Dr. Matthias Steinbacher

Institut für Industrieofenbau und Wärmetechnik (IOB), RWTH Aachen University Kopernikusstr. 10, 52074 Aachen Projektleiter: <u>Dr.-Ing. Nico Schmitz</u>

ResInMa - Resistant, Innovative Materials Werkstoffe und Versuchsmatrix

- Auslagerungstemperaturen: 1000, 1250, 1500°C
- Auslagerungsdauer:
 600 h (3x200h)
- > Atmosphären:
 - Reine Methanverbrennungsatmosphäre als Referenz (Case: a)
 - 50%/50% Wasserstoff/Methan-Verbrennungsatmosphäre (Case: b)
 - 100% Wasserstoff-Verbrennungsatmosphäre (Case: c)

Werkstoff		1000 °C	1250 °C	1500 °C				
Austenitische hitzebeständige Stähle								
1.4828	X15CrNiSi20-12	a, b, c						
1.4841	X15CrNiSi25-21	a, b, c						
1.4835	X9CrNiSiNCe21-11-2	a, b, c						
1.4876	X10NiCrAlTi32-21	a, b, c						
Ferritische hitzebeständige Stähle								
1.4742	X10CrAlSi18	a, b, c						
1.4762	X10CrAlSi25	a, b, c						
Kanthal APM	FeCrAl	a, b, c	a, b, c					
Kanthal APMT	FeCrAlMo	a, b, c	a, b, c					
Ni-Basis Legierungen								
2.4851	NiCr23Fe15	a, b, c						
2.4633	NiCr25FeAIY	a, b, c						
Keramiken								
SiSiC (CarSIK-G/SiSiC)		a, b, c	a, b, c					
SiSiC (IntrinSic/SiSiC)		a, b, c	a, b, c					
Aluminium-Zirkon-Silikat (AZS)		a, b, c	a, b, c	a, b				
Aluminiumoxid (Jargal/Al ₂ O ₃)		a, b, c	a, b, c	a, b				
Silica (SiO ₂)		a, b, c	a, b, c	a, b				

ResInMa – Resistant, Innovative Materials Teilprojekt 3 in der AiF-Leittechnologie der Energiewende TTgoesH2

ResInMa - Resistant, Innovative Materials Verbrennungsatmosphären als Randbedingungen Gaszusammensetzung an der Innenseite eines Brennermundes

Simulierte Atmosphären der Wasserstoffverbrennungsszenarien, Anteile in vol.-%, Lambda 1,1

Szenario	H_2O	O ₂	CO ₂	CO	N ₂	H ₂
0 % H ₂	17,1	1,8	8,4	0,2	71,9	0,1
50 % H ₂	20,1	1,8	6,6	0,07	70,7	0,12
100 % H ₂	30,8	1,8	0	0	66,1	0,46

ResInMa - Resistant, Innovative Materials

Teilprojekt 3 in der AiF-Leittechnologie der Energiewende TTgoesH2

ResInMa - Resistant, Innovative Materials Langzeitauslagerungsversuche

Auslagerungsversuche im Rohrofen bei 1000, 1250, 1500 °C für 200, 400, 600 h

- Screening von 23 Werkstoffen in Auslagerungsversuchen
- Hier vorgestellt:
 - 2 SiSiC
 - Jargal
 - Silica
 - Ergebnisse f
 ür zwei ausgew
 ählte ferritische hitzebest
 ändige St
 ähle
 - 2 Nickelbasiswerkstoffe
- Gravimetrische Messungen, Lichtmikroskopie, Raman-Mikroskopie, REM/EDX

ResInMa - Resistant, Innovative Materials Langzeitauslagerungsversuche

- Rohrofenprüfstand für Auslagerungsversuche über 600 h
- Temperatur: 1000, 1250, 1500 °C
- Dosierbare Atmosphäre: H₂O, H₂, CO₂, CO, N₂, O₂, Spülgas Ar
- ➢ Prozesskette: Auslagerungsversuche → Gravimetrische Untersuchung der Werkstoffproben nach 200/400/600 h → Mikrostrukturanalytik, REM/EDX zur Identifikation von Korrosionsproz.

Massenänderungen der ausgelagerten keramischen Proben von Jargal und SiSiC bei 0% H₂-, 50% H₂- und 100% H₂-Verbrennungsatmosphäre bei 1000, 1250 und 1500 °C

SiSiC-Keramiken zeigen Massenzunahme mit Einfluss der Atmosphäre, größte Massenzunahme wird bei 100% H₂-Szenario erreicht

LIMI-Aufnahmen SiSiC (IntrinSiC) im Ausgangszustand, nach 600 h Auslagerungszeit bei 0% H₂-, 50% H₂- und 100% H₂-Verbrennungsatmosphäre bei 1000 und 1250 °C

- ➢ Oberflächliche Degradation → Rissbildung und Ausbrüche
- Bei 1250 °C Bildung einer SiO2-Deckschicht in allen Atmosphären, bei 100 % H2 am stärksten
- Porosität im Bereich der oberflächlichen SiC-Körner

Massenänderungen der Proben von Silica Stella GNL und AZS ER 1681 RN bei 0% H_2 -, 50% H_2 - und 100% H_2 -Verbrennungsatmosphäre bei 1000°C

Auslagerungszeit/h

Makroskopische Aufnahmen der AZS ER 1681 RN Proben nach 600 h bei 0% H_2 -, 50% H_2 - und 100% H_2 -Verbrennungsatmosphäre bei 1000, 1250 und 1500 °C

ResInMa – Resistant, Innovative Materials Teilprojekt 3 in der AiF-Leittechnologie der Energiewende TTgoesH2

Lichtmikroskopische Aufnahmen der AZS ER 1681 RN Proben nach 600 h bei 0% H_2 -, 50% H_2 - und 100% H_2 -Verbrennungsatmosphäre bei 1000, 1250 und 1500 °C

Massenänderungen der ausgelagerten Proben der ferritischen hitzebeständigen Stähle und Nickelbasiswerkstoffe bei 0% H_2 -, 50% H_2 - und 100% H_2 -Verbrennungsatmosphäre bei 1000°C

Massenzunahme durch Oxidschichtbildung, parabolisch durch dichte, schützende Chromoxidschichten

- Lichtmikroskopische Aufnahmen der ferritischen hitzebeständigen Stähle 1.4742 und 1.4762 im Ausgangszustand sowie nach 600 h bei 1000°C in Verbrennungsatmosphären von CH₄, 50 % CH₄ / 50 % H₂ und 100 % H₂
- Bildung oxidischer Schutzschichten, Zunderschicht und einer tieferliegenden Degradationszone
- 100% H₂-Szenario zeigt geringere mikrostrukturelle Auswirkungen beider Legierungen, insbesondere 1.4762; das lässt auf eine O₂-dichte Schutzschicht schließen

12s 1,5V 60% HNO₃ Elektrolyt extern, 20 s abpoliert

- Lichtmikroskopische Aufnahmen der Nickelbasiswerkstoffe 2.4633 und 2.4851 im Ausgangszustand sowie nach 600 h bei 1000°C in Verbrennungsatmosphären von CH₄, 50 % CH₄/ 50 % H₂ und 100 % H₂
- Bildung oxidischer Cr₂O₃-Schutzschicht, einer Zunderschicht und einer tieferliegenden Degradationszone
- Für höhere Wasserstoffgehalte im Szenario folgt stärkere mikrostrukturelle Schädigung des Werkstoffs

Keramische Hochtemperaturwerkstoffe

- Feuerfeste Werkstoffe mit hohen Gehalten an Al₂O₃ zeigen in den Versuchen keinen eindeutigen Einfluss der Verbrennungsatmosphäre auf das Korrosionsverhalten
- Versuche an reinen Al₂O₃-Werkstoffen benötigt, um isolierten Einfluss zu ermitteln
- Werkstoffe mit Gehalten an SiO₂ weisen höhere Massenverluste in reiner Wasserstoffverbrennungsatmosphäre auf als in der Referenzatmosphäre
- SiSiC baut oberflächliche Oxidschicht auf, in H₂-Verbrennungsatmosphäre stärkere Oxidation gemessen, kein Massenverlust während Auslagerungszeit

Metallische Hochtemperaturwerkstoffe

- Metallische Hochtemperaturwerkstoffe korrodieren in wasserdampfhaltigen Atmosphären unter gegebenen Bedingungen und zeigen Oxidschichtbildung mit Degradation
- Schädigung in Abhängigkeit vom H₂-Gehalt fällt unterschiedlich aus und ist werkstoffabhängig, z.B. sind Chrom- und Aluminiumgehalt maßgeblich
- ➢ Nickelbasiswerkstoffe sind tendenziell empfindlicher bei H₂-Verbrennungsatmosphären

Vielen Dank für Ihre Aufmerksamkeit !

Kontakt: Chris Fritsche

TU Bergakademie Freiberg Gustav-Zeuner-Straße 7 09599 Freiberg / Sachsen

Tel.: +49 (0) 3731 39-3744 E-Mail: chris.fritsche@iwtt.tu-freiberg.de www.gwa.tu-freiberg.de

ResInMa – Resistant, Innovative Materials Teilprojekt 3 in der AiF-Leittechnologie der Energiewende TTgoesH2

Lichtmikroskopische und makroskopische Aufnahmen der Proben 1.4742 und 1.4762 nach 600 h bei 1000°C in 0% H_2 - und 100% H_2 -Verbrennungsatmosphäre

1.4742 | 100% CH₄

1.4742 | 100% H₂

1.4762 | 100% CH₄

1.4762 | 100% H₂

